Tuning-parameter selection in regularized estimations of large covariance matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized estimation of large covariance matrices

This paper considers estimating a covariance matrix of p variables from n observations by either banding or tapering the sample covariance matrix, or estimating a banded version of the inverse of the covariance. We show that these estimates are consistent in the operator norm as long as (logp)/n→ 0, and obtain explicit rates. The results are uniform over some fairly natural well-conditioned fam...

متن کامل

Regularized Estimation of High-dimensional Covariance Matrices

Regularized Estimation of High-dimensional Covariance Matrices

متن کامل

Shrinkage Tuning Parameter Selection in Precision Matrices Estimation

Recent literature provides many computational and modeling approaches for covariance matrices estimation in a penalized Gaussian graphical models but relatively little study has been carried out on the choice of the tuning parameter. This paper tries to fill this gap by focusing on the problem of shrinkage parameter selection when estimating sparse precision matrices using the penalized likelih...

متن کامل

A Clt for Regularized Sample Covariance Matrices

We consider the spectral properties of a class of regularized estimators of (large) empirical covariance matrices corresponding to stationary (but not necessarily Gaussian) sequences, obtained by banding. We prove a law of large numbers (similar to that proved in the Gaussian case by Bickel and Levina), which implies that the spectrum of a banded empirical covariance matrix is an efficient esti...

متن کامل

Large Dynamic Covariance Matrices

Second moments of asset returns are important for risk management and portfolio selection. The problem of estimating second moments can be approached from two angles: time series and the cross-section. In time series, the key is to account for conditional heteroskedasticity; a favored model is Dynamic Conditional Correlation (DCC), derived from the ARCH/GARCH family started by Engle (1982). In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Computation and Simulation

سال: 2015

ISSN: 0094-9655,1563-5163

DOI: 10.1080/00949655.2015.1017823